

A TRITERPENE FROM THE FRUITS OF *RUBUS CHINGII*

MASAO HATTORI,* KUE-PING KUO, YUE-ZHONG SHU, YASUHIRO TEZUKA, TOHRU KIKUCHI and TSUNEO NAMBA
Research Institute for Wakan-Yaku (Oriental Medicines), Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama
930-01, Japan

(Received 19 April 1988)

Key Word Index—*Rubus chingii*; Rosaceae; diosphenol-type triterpene; fupenzic acid.

Abstract—A new diosphenol-type triterpene fupenzic acid, was isolated from the fruits of *Rubus chingii* and characterized as 2,19 α -dihydroxy-3-oxo-1,12-dien-28-oic acid on the basis of UV, MS, ^1H and ^{13}C NMR spectral analysis as well as chemical conversion.

INTRODUCTION

The fruits of *Rubus chingii* have been used as a food and tonic in traditional Chinese medicine. Tanaka *et al.* [1] have reported the isolation of a diterpene glycoside, goshonoside-F₅, from a commercial crude drug, Fu-penzi in Chinese, which was derived from the fruits of *Rubus chingii*. During the course of studies on evaluation of crude drugs from *Rubus* spp. we isolated a new diosphenol-type triterpene.

RESULTS AND DISCUSSION

A methanol extract of the roots of *Rubus chingii* was partitioned against various organic solvents and the ethyl acetate fraction was subjected to column chromatography to afford a crystalline compound **1**, along with β -sitosterol and tiliroside. Compound **1** was obtained as colourless needles, mp 189–190°. The molecular formula was determined to be $\text{C}_{30}\text{H}_{44}\text{O}_5$ by high-resolution MS. The ^1H NMR spectrum was characteristic of ursane-type triterpene with two olefinic protons (δ 5.35 and 6.29). Furthermore, the ^{13}C NMR spectral data also indicated their similarity with 19 α -hydroxyurs-12-en-28-oic acid derivatives, except for the signals ascribed to the A-ring. The UV spectrum showed an intense band at 271 nm, which shifted bathochromically to 309 nm in alkaline medium (0.1 M NaOH), whilst acetylation of **1** changed the absorption to 237 nm in the monoacetate (**2**), suggesting the presence of the diosphenol chromophore [2]. The observation of ^{13}C NMR signals at δ 130.9 (C-1), 146.7 (C-2) and 203.2 (C-3) and long range carbon–proton shift correlation between C-1 and H-25 confirmed the diosphenol moiety in the A-ring. Reduction of **1** with sodium borohydride [3] afforded a triol (**3**), which had an almost identical MS spectrum with that of authentic 2 α ,3 β ,19 α -trihydroxy-urs-12-en-28-oic acid but showed different chemical shifts and signal patterns at δ 3.14

Table 1. ^{13}C NMR spectral data for compounds **1**–**3**
(δ relative to TMS in CD_3OD)

C	1 *	2 †	3 †
1	130.9 (d)	147.1 (d)	46.3 (t)
2	146.7 (s)	144.7 (s)	73.0 (d)
3	203.2 (s)	200.5 (s)	80.5 (d)
4	46.2 (s)	47.3 (s)	38.7 (s)
5	55.9 (d)	55.2 (d)	57.6 (d)
6	20.8 (t)	20.8 (t)	20.2 (t)
7	34.8 (t)	34.6 (t)	35.1 (t)
8	40.2 (s)	41.4 (s)	40.0 (s)
9	44.9 (d)	43.8 (d)	43.8 (d)
10	43.7 (s)	43.8 (s)	43.6 (s)
11	25.4 (t)	25.3 (t)	25.7 (t)
12	129.8 (d)	129.5 (d)	130.4 (d)
13	141.1 (s)	141.3 (s)	140.7 (s)
14	42.5 (s)	42.6 (s)	42.0 (s)
15	30.3 (t)	30.3 (t)	30.3 (t)
16	27.3 (t)	27.4 (t)	27.5 (t)
17	48.0 (s)	48.0 (s)	48.0 (s)
18	56.0 (s)	56.1 (s)	55.9 (s)
19	74.3 (s)	74.3 (s)	74.4 (s)
20	43.7 (d)	43.8 (d)	43.8 (d)
21	28.0 (t)	28.1 (t)	28.1 (t)
22	39.6 (t)	39.7 (t)	39.8 (t)
23	28.9 (q)	29.0 (q)	31.1 (q)
24	23.0 (q)	22.8 (q)	18.4 (q)
25	21.0 (q)	21.1 (q)	17.7 (q)
26	18.6 (q)	18.7 (q)	18.7 (q)
27	25.6 (q)	25.5 (q)	25.7 (q)
28	182.8 (s)	183.0 (s)	183.0 (s)
29	27.9 (q)	27.9 (q)	27.9 (q)
30	17.3 (q)	17.3 (q)	17.3 (q)
Me		20.3 (q)	
CO-		171.6 (s)	

*Measured at 100 MHz.

†Measured at 22.5 MHz.

*Author to whom correspondence should be addressed.

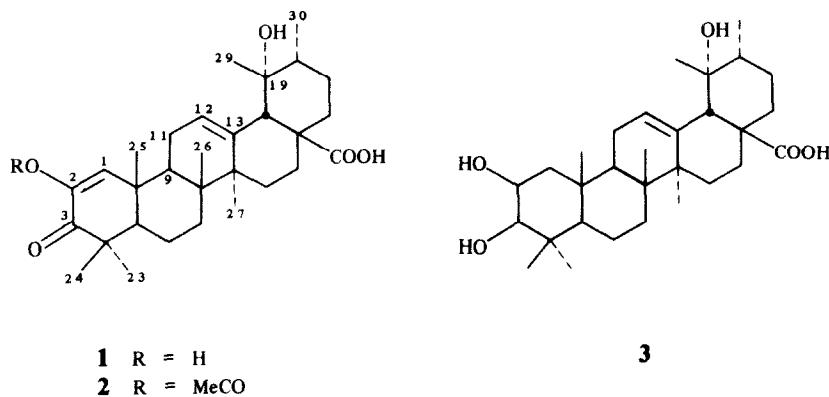


Fig. 1. Structures of compounds 1-3.

and 4.00 (H-2 and H-3, respectively) in the ^1H NMR spectrum. The coupling constant between H-2 and H-3 ($J = 3.9$ Hz) was in agreement with the stereochemistry of the two hydroxy groups at $2\beta,3\beta$ [4]. This spectroscopic and chemical evidence led us to propose the structure of **1** as 2,19 α -dihydroxy-3-oxo-urs-1,12-dien-28-oic acid, a new compound named fupenzic acid. Various glucosyl esters of 19 α -hydroxyursane-type triterpene have been reported as common constituents of the leaves of *Rubus* spp. [5] but no diosphenol-type triterpene has been isolated hitherto.

EXPERIMENTAL

Mps: uncorr. ^1H NMR spectra were taken at 270 or 400 MHz, and ^{13}C spectra at 22.5 or 100 MHz. EIMS were recorded on a probe at 70 eV.

Plant material. The fruit of *Rubus chingii* was purchased from Tochimoto Tenkaido Co. Ltd. (Japan) and the botanical source was anatomically confirmed by T. N.

Extraction and isolation. The powdered, dry fruits of *R. chingii* (3 kg) was refluxed with MeOH for 3 hr ($\times 3$). The extract (260 g) was suspended in H_2O and successively extracted with hexane, EtOAc, *n*-BuOH to give the respective extracts (27.9, 36.7 and 86.8 g). A part of the EtOAc extract (35 g) was subjected to CC on silica gel with CHCl_3 and CHCl_3 -MeOH (10:1 and 2:1) to afford β -sitosterol (20 mg), tiliroside (650 mg) and a new triterpene (42 mg), respectively.

Fupenzic acid (1). Mp 189–190°, $[\alpha]_D^{25} : 45.6^\circ$ (MeOH, c 0.16), High-resol. MS, Found, m/z 484.3164; Calcd for M^+ , $\text{C}_{30}\text{H}_{44}\text{O}_5$; 484.3187. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 271 ($\log \epsilon = 4.04$). IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} : 3420 (OH), 1690 (COOH), 1640 (C=C) ^1H NMR (CD_3OD): δ 0.87 (3H, s, H-26 \times 3), 0.93 (3H, d, $J = 6.6$ Hz, H-30 \times 3), 1.11 (3H, s, H-24 \times 3), 1.18 (3H, s, H-23 \times 3), 1.20 (3H, s, H-29 \times 3), 1.22 (3H, s, H-25 \times 3), 1.35 (3H, s, H-27 \times 3), 2.00 (1H, dd, $J = 6.8, 11.2$ Hz, H-9), 2.13 (1H, m, H-11a), 2.23 (1H, m, H-11b), 2.52 (1H, s, H-18), 5.35 (1H, br t, *ca* 0.4 Hz,

H-12), 6.28 (1H, s, H-1). Assignments were based on the ^1H - ^1H COSY, ^1H - ^{13}C COSY and long-range ^1H - ^{13}C COSY experiments. EIMS m/z (rel. int.): 484 (40, M^+), 438 (92), 366 (52), 201 (25), 151 (43), 146 (52), 55 (base peak).

Acetylation of 1. Compound **1** (11 mg) was reacted with $(\text{Ac}_2)_2\text{O}$ (0.5 ml) in pyridine (0.5 ml) at room temp. The product was purified by prep TLC to yield a monoacetate (**2**, 8 mg): mp 168–169°. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 237 ($\log \epsilon = 3.79$). ^1H NMR (270 MHz, CD_3OD): δ 0.80, 1.03, 1.08, 1.10, 1.17, 1.27 (each 3H, s, Me), 0.83 (3H, d, $J = 6.6$ Hz, H-30 \times 3), 2.07 (3H, s, Ac-O-), 2.43 (1H, s, H-18), 5.25 (1H, br s, H-12), 6.73 (1H, s, H-1), EIMS (rel. int.) m/z : 526 (11, M^+), 480 (82), 438 (36), 408 (56), 220 (38), 146 (100).

Reduction of 1 with NaBH_4 . Compound **1** (10 mg) was reduced with NaBH_4 (15 mg) in MeOH (1.5 ml) for 1 hr at room temp. After addition of a few drops of HOAc, the reaction mixture was concd *in vacuo* and extracted with EtOAc. The extract was purified by prep TLC to give a crystalline compound (**3**): mp 276–278°, $[\alpha]_D^{25} : 99.4^\circ$ (MeOH, c 0.17), IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} : 3430 (OH), 1690 (COOH), 1640 (C=C) ^1H NMR (CD_3OD): δ 0.80, 1.00, 1.01, 1.19, 1.25, 1.32 (each 3H, s, Me), 0.93 (3H, d, $J = 6.6$ Hz, H-30 \times 3), 2.50 (1H, s, H-18), 3.14 (1H, d, $J = 3.9$ Hz, H-3), 4.00 (1H, br q, H-2), 5.30 (1H, br t, $J = 2.0$ Hz, H-12). EIMS m/z (rel. int.): 488 (less than 1%, M^+), 470 (2), 406 (78), 352 (36), 201 (50), 187 (91), 146 (100).

REFERENCES

1. Chou, W., Oinaka, T., Kanamura, F., Mizutani, K., Chen, F. and Tanaka, O. (1987) *Chem Pharm. Bull.* **35**, 3021.
2. Scott, A. I. (1964) *Introduction to the Ultraviolet Spectra of Natural Products*, p. 60. Pergamon Press, Oxford.
3. Kikuchi, T., Kanaoka, M., Hanagaki, S. and Kadota, S. (1979) *Chem. Letters*, 1495.
4. Ngounou, F. N., Lontsi, D., Ayafor, J. F. and Sondengam, B. L. (1987) *Phytochemistry* **26**, 3080.
5. Gao, F., Chen, F., Tanaka, T., Kasai, R., Seto, T. and Tanaka, O. (1985) *Chem. Pharm. Bull.* **33**, 37.